پیش بینی مقاومت فشاری بتن حاوی خاکستر بادی، میکروسیلیس و سرباره ی مس با استفاده از روش های آماری ، شبکه ی عصبی مصنوعی و منطق فازی
نویسندگان
چکیده مقاله:
در پژوهش حاضر، به پیشبینی مقاومت فشاری بتن حاوی پوزولان به کمک شبکهی عصبی مصنوعی و تحلیل رگرسیون پرداخته شده است. اطلاعات به کاررفته شامل ۸۰ نمونه است که مقاومت فشاری ۷ و ۲۸ روزهی آنها تعیین شده است. در بخش شبکهی عصبی مصنوعی از یک شبکهی پرسپترون چند لایه با الگوریتمهای متفاوت آموزشی پس انتشار خطا و تعریف یک یا چند لایهی مخفی و تعداد ۷ نورون در لایهی ورودی و ۱ نورون در لایهی خروجی استفاده شده است. دو معیار ضریب همبستگی و میانگین مربعات خطا به عنوان پایه برای انتخاب شبکهی بهینه در نظر گرفته شدند و نهایتاً یک مدل برای پیشبینی مقاومت فشاری ۷ و ۲۸ روزهی بتن ارائه شد. منطق فازی، روشی دیگر برای پیشبینی مقاومت فشاری بتن است. در مطالعهی حاضر با دقت بسیار مناسبی اقدام به پیشبینی مقاومت فشاری بتن به کمک تحلیل فازی شده است. در تحلیل رگرسیون پس از تعیین توابع توزیعات احتمال داده به منظور نرمالسازی اطلاعات به کمک نرمفزار MATLAB، معادلهی بهینه برای تعیین مقاومت فشاری بتن ارائه شده است. نتایج نشان داد که شبکهی عصبی با الگوریتم لونبرگ مارکوارت، بهترین دقت و تحلیل رگرسیون و کمترین دقت را برای تعیین مقاومت فشاری بتن دارند.
منابع مشابه
پیش بینی مقاومت پیوستگی میلگرد و بتن حاوی میکروسیلیس، نانوسیلیس و الیاف پلیمری با استفاده از شبکه عصبی مصنوعی
در این پژوهش مقاومت پیوستگی میان میلگرد و بتن حاوی درصدهای مختلف میکروسیلیس، نانوسیلیسو الیاف پلیمری مورد بررسی قرار گرفته است. به همین منظور 36 نمونه آزمایشگاهی استوانهای 15×10 سانتی متری با 12 طرح اختلاط مختلف ساخته شده است. یک مدل شبکه عصبی مصنوعی (ANN) برای پیش بینی نتایج آزمایشگاهی مورد استفاده قرار گرفته است. مدل مورد استفاده شامل 6 پارامتر ورودی میکرو و نانو سیلیس، الیاف پلیمری، نسبتها...
متن کاملتثبیت خاک ماسه یی با ژئوپلیمر سرباره ی مس و ژئوپلیمر ترکیب سرباره ی مس و میکروسیلیس
امروزه صنعت تولید سیمان، آثار مخربی در محیط زیست ایجاد کرده است لذا در پژوهش حاضر، به منظور بهبود مقاومت فشاری خاک ماسهیی، به جای سیمان از ژئوپلیمر سربارهی مس با دو نوع محلول فعالساز قلیایی استفاده شده است. در نوشتار حاضر، مواردی همچون تأثیر پارامترهای اندازهی ذرات سربارهی مس، تأثیر استفاده از میکروسیلیس بهعنوان افزودنی به مادهی خام ژئوپلیمر در مقاومت فشاری و مقایسهی مقاومت فشاری خاک تث...
متن کاملمدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان
امروزه از بتن غلتکی در ساخت سدها و روسازی راهها استفاده میشود و طی سالهای اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهمترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری میباشد که افزایش آن میتواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیلدهنده آن سبب مشک...
متن کاملSurvey of the nutritional status and relationship between physical activity and nutritional attitude with index of BMI-for-age in Semnan girl secondary school, winter and spring, 2004
دیکچ ه باس فده و هق : ب یناوجون نارود رد هیذغت تیعضو یسررب ه زا ،نارود نیا رد یراتفر و یکیزیف تارییغت تعسو لیلد ب تیمها ه تسا رادروخرب ییازس . یذغتءوس نزو هفاضا ،یرغلا ،یقاچ زا معا ه هیذغت یدق هاتوک و یناوـجون نارود رد یا صخاش نییعت رد ب نارود رد یرامیب عون و ریم و گرم یاه م یلاسگرز ؤ تـسا رث . لماوـع تاـعلاطم زا یرایسـب لـثم ی هتسناد طبترم هیذغت عضو اب بسانم ییاذغ تاداع داجیا و یتفایرد یفاضا...
متن کاملپیش بینی تبخیر از سطح ایستابی کم عمق با استفاده از شبیه های وایازی و شبکه ی عصبی مصنوعی
رابطه ی بین عمق سطح ایستابی و تبخیر از سطح خاک در اغلب مناطق خشک و نیمه خشک بسیار مهم است. در این مناطق به علت آبیاری بیش از حد نیاز، اغلب سطح ایستابی نزدیک زمین است که باعث شوری خاک میشود. در این مطالعه از یک شبیه فیزیکی سطح ایستابی برای تعیین شدت تبخیر در خاکهای لوم شنی، لومی و لوم رسی در گلخانه و برای سه سطح ایستابی 40، 60 و 80 سانتی متری استفاده شده است. تبخیر از سطح خاک، تبخیر از سطح آزاد...
متن کاملشبکههای عصبی مصنوعی برای پیش بینی مقاومت فشاری بتن: پس انتشار خطا و شبکه اِلمان
در سال های اخیر، شبکه های عصبی مصنوعی کاربرد های بسیار زیادی در علوم مختلف مهندسی، از جمله مهندسی عمران پیدا نموده است. در این مقاله از دو نوع شبکة عصبی مصنوعی با سه ساختار مختلف، برای پیش بینی مقاومت فشاری بتن استفاده شده است. در این مطالعه، نوع جدیدی از شبکه های عصبی مصنوعی، به نام شبکة عصبیِ بازگشتی المان (elman networks recurrent ) معرفی شده و مقاومت نمونه های بتنی با استفاده از این شبکه ها ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 34.2 شماره 3.2
صفحات 83- 92
تاریخ انتشار 2018-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023